Copied to
clipboard

G = C337M4(2)  order 432 = 24·33

3rd semidirect product of C33 and M4(2) acting via M4(2)/C4=C22

metabelian, supersoluble, monomial

Aliases: C337M4(2), C12.70S32, (S3×C12).3S3, C337C89C2, D6.(C3⋊Dic3), C324C813S3, (C3×C12).165D6, (S3×C6).7Dic3, C6.29(S3×Dic3), Dic3.(C3⋊Dic3), C33(D6.Dic3), C3214(C8⋊S3), C31(C12.58D6), (C3×Dic3).3Dic3, C325(C4.Dic3), (C32×Dic3).3C4, (C32×C12).67C22, (S3×C3×C6).6C4, C4.25(S3×C3⋊S3), (S3×C3×C12).1C2, C12.40(C2×C3⋊S3), (C3×C6).90(C4×S3), C2.3(S3×C3⋊Dic3), C6.2(C2×C3⋊Dic3), (C4×S3).2(C3⋊S3), (C3×C324C8)⋊11C2, (C32×C6).34(C2×C4), (C3×C6).36(C2×Dic3), SmallGroup(432,433)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C337M4(2)
C1C3C32C33C32×C6C32×C12S3×C3×C12 — C337M4(2)
C33C32×C6 — C337M4(2)
C1C4

Generators and relations for C337M4(2)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=a-1, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d5 >

Subgroups: 520 in 152 conjugacy classes, 58 normal (22 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, M4(2), C3×S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C62, C8⋊S3, C4.Dic3, S3×C32, C32×C6, C3×C3⋊C8, C324C8, C324C8, S3×C12, C6×C12, C32×Dic3, C32×C12, S3×C3×C6, D6.Dic3, C12.58D6, C3×C324C8, C337C8, S3×C3×C12, C337M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, M4(2), C3⋊S3, C4×S3, C2×Dic3, C3⋊Dic3, S32, C2×C3⋊S3, C8⋊S3, C4.Dic3, S3×Dic3, C2×C3⋊Dic3, S3×C3⋊S3, D6.Dic3, C12.58D6, S3×C3⋊Dic3, C337M4(2)

Smallest permutation representation of C337M4(2)
On 144 points
Generators in S144
(1 18 84)(2 85 19)(3 20 86)(4 87 21)(5 22 88)(6 81 23)(7 24 82)(8 83 17)(9 70 50)(10 51 71)(11 72 52)(12 53 65)(13 66 54)(14 55 67)(15 68 56)(16 49 69)(25 143 59)(26 60 144)(27 137 61)(28 62 138)(29 139 63)(30 64 140)(31 141 57)(32 58 142)(33 41 113)(34 114 42)(35 43 115)(36 116 44)(37 45 117)(38 118 46)(39 47 119)(40 120 48)(73 93 104)(74 97 94)(75 95 98)(76 99 96)(77 89 100)(78 101 90)(79 91 102)(80 103 92)(105 125 136)(106 129 126)(107 127 130)(108 131 128)(109 121 132)(110 133 122)(111 123 134)(112 135 124)
(1 72 124)(2 125 65)(3 66 126)(4 127 67)(5 68 128)(6 121 69)(7 70 122)(8 123 71)(9 133 82)(10 83 134)(11 135 84)(12 85 136)(13 129 86)(14 87 130)(15 131 88)(16 81 132)(17 111 51)(18 52 112)(19 105 53)(20 54 106)(21 107 55)(22 56 108)(23 109 49)(24 50 110)(25 39 79)(26 80 40)(27 33 73)(28 74 34)(29 35 75)(30 76 36)(31 37 77)(32 78 38)(41 93 137)(42 138 94)(43 95 139)(44 140 96)(45 89 141)(46 142 90)(47 91 143)(48 144 92)(57 117 100)(58 101 118)(59 119 102)(60 103 120)(61 113 104)(62 97 114)(63 115 98)(64 99 116)
(1 11 112)(2 105 12)(3 13 106)(4 107 14)(5 15 108)(6 109 16)(7 9 110)(8 111 10)(17 134 71)(18 72 135)(19 136 65)(20 66 129)(21 130 67)(22 68 131)(23 132 69)(24 70 133)(25 91 119)(26 120 92)(27 93 113)(28 114 94)(29 95 115)(30 116 96)(31 89 117)(32 118 90)(33 137 104)(34 97 138)(35 139 98)(36 99 140)(37 141 100)(38 101 142)(39 143 102)(40 103 144)(41 61 73)(42 74 62)(43 63 75)(44 76 64)(45 57 77)(46 78 58)(47 59 79)(48 80 60)(49 81 121)(50 122 82)(51 83 123)(52 124 84)(53 85 125)(54 126 86)(55 87 127)(56 128 88)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 44)(2 41)(3 46)(4 43)(5 48)(6 45)(7 42)(8 47)(9 62)(10 59)(11 64)(12 61)(13 58)(14 63)(15 60)(16 57)(17 39)(18 36)(19 33)(20 38)(21 35)(22 40)(23 37)(24 34)(25 51)(26 56)(27 53)(28 50)(29 55)(30 52)(31 49)(32 54)(65 137)(66 142)(67 139)(68 144)(69 141)(70 138)(71 143)(72 140)(73 105)(74 110)(75 107)(76 112)(77 109)(78 106)(79 111)(80 108)(81 117)(82 114)(83 119)(84 116)(85 113)(86 118)(87 115)(88 120)(89 121)(90 126)(91 123)(92 128)(93 125)(94 122)(95 127)(96 124)(97 133)(98 130)(99 135)(100 132)(101 129)(102 134)(103 131)(104 136)

G:=sub<Sym(144)| (1,18,84)(2,85,19)(3,20,86)(4,87,21)(5,22,88)(6,81,23)(7,24,82)(8,83,17)(9,70,50)(10,51,71)(11,72,52)(12,53,65)(13,66,54)(14,55,67)(15,68,56)(16,49,69)(25,143,59)(26,60,144)(27,137,61)(28,62,138)(29,139,63)(30,64,140)(31,141,57)(32,58,142)(33,41,113)(34,114,42)(35,43,115)(36,116,44)(37,45,117)(38,118,46)(39,47,119)(40,120,48)(73,93,104)(74,97,94)(75,95,98)(76,99,96)(77,89,100)(78,101,90)(79,91,102)(80,103,92)(105,125,136)(106,129,126)(107,127,130)(108,131,128)(109,121,132)(110,133,122)(111,123,134)(112,135,124), (1,72,124)(2,125,65)(3,66,126)(4,127,67)(5,68,128)(6,121,69)(7,70,122)(8,123,71)(9,133,82)(10,83,134)(11,135,84)(12,85,136)(13,129,86)(14,87,130)(15,131,88)(16,81,132)(17,111,51)(18,52,112)(19,105,53)(20,54,106)(21,107,55)(22,56,108)(23,109,49)(24,50,110)(25,39,79)(26,80,40)(27,33,73)(28,74,34)(29,35,75)(30,76,36)(31,37,77)(32,78,38)(41,93,137)(42,138,94)(43,95,139)(44,140,96)(45,89,141)(46,142,90)(47,91,143)(48,144,92)(57,117,100)(58,101,118)(59,119,102)(60,103,120)(61,113,104)(62,97,114)(63,115,98)(64,99,116), (1,11,112)(2,105,12)(3,13,106)(4,107,14)(5,15,108)(6,109,16)(7,9,110)(8,111,10)(17,134,71)(18,72,135)(19,136,65)(20,66,129)(21,130,67)(22,68,131)(23,132,69)(24,70,133)(25,91,119)(26,120,92)(27,93,113)(28,114,94)(29,95,115)(30,116,96)(31,89,117)(32,118,90)(33,137,104)(34,97,138)(35,139,98)(36,99,140)(37,141,100)(38,101,142)(39,143,102)(40,103,144)(41,61,73)(42,74,62)(43,63,75)(44,76,64)(45,57,77)(46,78,58)(47,59,79)(48,80,60)(49,81,121)(50,122,82)(51,83,123)(52,124,84)(53,85,125)(54,126,86)(55,87,127)(56,128,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,44)(2,41)(3,46)(4,43)(5,48)(6,45)(7,42)(8,47)(9,62)(10,59)(11,64)(12,61)(13,58)(14,63)(15,60)(16,57)(17,39)(18,36)(19,33)(20,38)(21,35)(22,40)(23,37)(24,34)(25,51)(26,56)(27,53)(28,50)(29,55)(30,52)(31,49)(32,54)(65,137)(66,142)(67,139)(68,144)(69,141)(70,138)(71,143)(72,140)(73,105)(74,110)(75,107)(76,112)(77,109)(78,106)(79,111)(80,108)(81,117)(82,114)(83,119)(84,116)(85,113)(86,118)(87,115)(88,120)(89,121)(90,126)(91,123)(92,128)(93,125)(94,122)(95,127)(96,124)(97,133)(98,130)(99,135)(100,132)(101,129)(102,134)(103,131)(104,136)>;

G:=Group( (1,18,84)(2,85,19)(3,20,86)(4,87,21)(5,22,88)(6,81,23)(7,24,82)(8,83,17)(9,70,50)(10,51,71)(11,72,52)(12,53,65)(13,66,54)(14,55,67)(15,68,56)(16,49,69)(25,143,59)(26,60,144)(27,137,61)(28,62,138)(29,139,63)(30,64,140)(31,141,57)(32,58,142)(33,41,113)(34,114,42)(35,43,115)(36,116,44)(37,45,117)(38,118,46)(39,47,119)(40,120,48)(73,93,104)(74,97,94)(75,95,98)(76,99,96)(77,89,100)(78,101,90)(79,91,102)(80,103,92)(105,125,136)(106,129,126)(107,127,130)(108,131,128)(109,121,132)(110,133,122)(111,123,134)(112,135,124), (1,72,124)(2,125,65)(3,66,126)(4,127,67)(5,68,128)(6,121,69)(7,70,122)(8,123,71)(9,133,82)(10,83,134)(11,135,84)(12,85,136)(13,129,86)(14,87,130)(15,131,88)(16,81,132)(17,111,51)(18,52,112)(19,105,53)(20,54,106)(21,107,55)(22,56,108)(23,109,49)(24,50,110)(25,39,79)(26,80,40)(27,33,73)(28,74,34)(29,35,75)(30,76,36)(31,37,77)(32,78,38)(41,93,137)(42,138,94)(43,95,139)(44,140,96)(45,89,141)(46,142,90)(47,91,143)(48,144,92)(57,117,100)(58,101,118)(59,119,102)(60,103,120)(61,113,104)(62,97,114)(63,115,98)(64,99,116), (1,11,112)(2,105,12)(3,13,106)(4,107,14)(5,15,108)(6,109,16)(7,9,110)(8,111,10)(17,134,71)(18,72,135)(19,136,65)(20,66,129)(21,130,67)(22,68,131)(23,132,69)(24,70,133)(25,91,119)(26,120,92)(27,93,113)(28,114,94)(29,95,115)(30,116,96)(31,89,117)(32,118,90)(33,137,104)(34,97,138)(35,139,98)(36,99,140)(37,141,100)(38,101,142)(39,143,102)(40,103,144)(41,61,73)(42,74,62)(43,63,75)(44,76,64)(45,57,77)(46,78,58)(47,59,79)(48,80,60)(49,81,121)(50,122,82)(51,83,123)(52,124,84)(53,85,125)(54,126,86)(55,87,127)(56,128,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,44)(2,41)(3,46)(4,43)(5,48)(6,45)(7,42)(8,47)(9,62)(10,59)(11,64)(12,61)(13,58)(14,63)(15,60)(16,57)(17,39)(18,36)(19,33)(20,38)(21,35)(22,40)(23,37)(24,34)(25,51)(26,56)(27,53)(28,50)(29,55)(30,52)(31,49)(32,54)(65,137)(66,142)(67,139)(68,144)(69,141)(70,138)(71,143)(72,140)(73,105)(74,110)(75,107)(76,112)(77,109)(78,106)(79,111)(80,108)(81,117)(82,114)(83,119)(84,116)(85,113)(86,118)(87,115)(88,120)(89,121)(90,126)(91,123)(92,128)(93,125)(94,122)(95,127)(96,124)(97,133)(98,130)(99,135)(100,132)(101,129)(102,134)(103,131)(104,136) );

G=PermutationGroup([[(1,18,84),(2,85,19),(3,20,86),(4,87,21),(5,22,88),(6,81,23),(7,24,82),(8,83,17),(9,70,50),(10,51,71),(11,72,52),(12,53,65),(13,66,54),(14,55,67),(15,68,56),(16,49,69),(25,143,59),(26,60,144),(27,137,61),(28,62,138),(29,139,63),(30,64,140),(31,141,57),(32,58,142),(33,41,113),(34,114,42),(35,43,115),(36,116,44),(37,45,117),(38,118,46),(39,47,119),(40,120,48),(73,93,104),(74,97,94),(75,95,98),(76,99,96),(77,89,100),(78,101,90),(79,91,102),(80,103,92),(105,125,136),(106,129,126),(107,127,130),(108,131,128),(109,121,132),(110,133,122),(111,123,134),(112,135,124)], [(1,72,124),(2,125,65),(3,66,126),(4,127,67),(5,68,128),(6,121,69),(7,70,122),(8,123,71),(9,133,82),(10,83,134),(11,135,84),(12,85,136),(13,129,86),(14,87,130),(15,131,88),(16,81,132),(17,111,51),(18,52,112),(19,105,53),(20,54,106),(21,107,55),(22,56,108),(23,109,49),(24,50,110),(25,39,79),(26,80,40),(27,33,73),(28,74,34),(29,35,75),(30,76,36),(31,37,77),(32,78,38),(41,93,137),(42,138,94),(43,95,139),(44,140,96),(45,89,141),(46,142,90),(47,91,143),(48,144,92),(57,117,100),(58,101,118),(59,119,102),(60,103,120),(61,113,104),(62,97,114),(63,115,98),(64,99,116)], [(1,11,112),(2,105,12),(3,13,106),(4,107,14),(5,15,108),(6,109,16),(7,9,110),(8,111,10),(17,134,71),(18,72,135),(19,136,65),(20,66,129),(21,130,67),(22,68,131),(23,132,69),(24,70,133),(25,91,119),(26,120,92),(27,93,113),(28,114,94),(29,95,115),(30,116,96),(31,89,117),(32,118,90),(33,137,104),(34,97,138),(35,139,98),(36,99,140),(37,141,100),(38,101,142),(39,143,102),(40,103,144),(41,61,73),(42,74,62),(43,63,75),(44,76,64),(45,57,77),(46,78,58),(47,59,79),(48,80,60),(49,81,121),(50,122,82),(51,83,123),(52,124,84),(53,85,125),(54,126,86),(55,87,127),(56,128,88)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,44),(2,41),(3,46),(4,43),(5,48),(6,45),(7,42),(8,47),(9,62),(10,59),(11,64),(12,61),(13,58),(14,63),(15,60),(16,57),(17,39),(18,36),(19,33),(20,38),(21,35),(22,40),(23,37),(24,34),(25,51),(26,56),(27,53),(28,50),(29,55),(30,52),(31,49),(32,54),(65,137),(66,142),(67,139),(68,144),(69,141),(70,138),(71,143),(72,140),(73,105),(74,110),(75,107),(76,112),(77,109),(78,106),(79,111),(80,108),(81,117),(82,114),(83,119),(84,116),(85,113),(86,118),(87,115),(88,120),(89,121),(90,126),(91,123),(92,128),(93,125),(94,122),(95,127),(96,124),(97,133),(98,130),(99,135),(100,132),(101,129),(102,134),(103,131),(104,136)]])

66 conjugacy classes

class 1 2A2B3A···3E3F3G3H3I4A4B4C6A···6E6F6G6H6I6J···6Q8A8B8C8D12A···12J12K···12R12S···12Z24A24B24C24D
order1223···333334446···666666···6888812···1212···1212···1224242424
size1162···244441162···244446···6181854542···24···46···618181818

66 irreducible representations

dim111111222222222444
type++++++-+-+-
imageC1C2C2C2C4C4S3S3Dic3D6Dic3M4(2)C4×S3C8⋊S3C4.Dic3S32S3×Dic3D6.Dic3
kernelC337M4(2)C3×C324C8C337C8S3×C3×C12C32×Dic3S3×C3×C6C324C8S3×C12C3×Dic3C3×C12S3×C6C33C3×C6C32C32C12C6C3
# reps1111221445422416448

Matrix representation of C337M4(2) in GL8(𝔽73)

10000000
01000000
006400000
00080000
000007200
000017200
00000010
00000001
,
10000000
01000000
006400000
00080000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000100
000000072
000000172
,
1556000000
3258000000
00010000
00100000
000002700
000027000
00000001
00000010
,
5120000000
1622000000
00100000
00010000
000072000
000007200
00000001
00000010

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[15,32,0,0,0,0,0,0,56,58,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[51,16,0,0,0,0,0,0,20,22,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C337M4(2) in GAP, Magma, Sage, TeX

C_3^3\rtimes_7M_4(2)
% in TeX

G:=Group("C3^3:7M4(2)");
// GroupNames label

G:=SmallGroup(432,433);
// by ID

G=gap.SmallGroup(432,433);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,36,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^5>;
// generators/relations

׿
×
𝔽